Benchmarking Attention-Based Interpretability of Deep Learning in Multivariate Time Series Predictions
نویسندگان
چکیده
منابع مشابه
DECADE: A Deep Metric Learning Model for Multivariate Time Series
Determining similarities (or distance) between multivariate time series sequences is a fundamental problem in time series analysis. The complex temporal dependencies and variable lengths of time series make it an extremely challenging task. Most existing work either rely on heuristics which lacks flexibility and theoretical justifications, or build complex algorithms that are not scalable to bi...
متن کامل17. Constraint-Based Neural Network Learning for Time Series Predictions
In this chapter, we have briefly surveyed previous work in predicting noise-free piecewise chaotic time series and noisy time series with high frequency random noise. For noise-free time series, we have proposed a constrained formulation for neural network learning that incorporates the error of each learning pattern as a constraint, a new cross-validation scheme that allows multiple validation...
متن کاملConstraint-Based Neural Network Learning for Time Series Predictions
In this chapter, we have surveyed briefly previous work in predicting noisefree piecewise chaotic time series and noisy time series with high frequency random noise. For noise-free time series, we have proposed a constrained formulation for neural-network learning that incorporates the error of each learning pattern as a constraint, a new cross-validation scheme that allows multiple validations...
متن کاملLearning Comprehensible Descriptions of Multivariate Time Series
Supervised classiication is one of the most active areas of machine learning research. Most work has focused on classiication in static domains, where an instantaneous snapshot of attributes is meaningful. In many domains, attributes are not static; in fact, it is the way they vary temporally that can make classiication possible. Examples of such domains include speech recognition, gesture reco...
متن کاملLearning leading indicators for time-series predictions
While the importance of Granger-causal (G-causal) relationships for learning vector autoregressive models (VARs) is widely acknowledged, the state-of-theart VAR methods do not address the problem of discovering the underlying Gcausality structure in a principled manner. VAR models can be restricted if such restrictions are supported by a strong domain theory (e.g. economics), but without such s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2021
ISSN: 1099-4300
DOI: 10.3390/e23020143